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Abstract

We study infant industry protection using a dynamic model in which the

industry’s cost is initially higher than that of foreign competitors. The industry

can stochastically lower its cost via learning by doing. Whether the industry

has transitioned to low cost is private information. We use a mechanism-design

approach to induce the industry to reveal its true cost. We show that (i) the

optimal protection, measured by infant industry output, declines over time and

is less than that under public information, (ii) the optimal protection policy is

time consistent under public information but not under private information, (iii)

the optimal protection policy can be implemented with minimal information

requirements, and (iv) a government with a limited budget can use a simple

approach to choose which industries to protect.
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1 Introduction

Protection of infant industries is perhaps the longest-lived exception to free trade.

Examples of protection range from those in the 19th century in the U.S. for steel rail

(Head, 1994) and tinplate (Irwin, 2000) to more recent ones, such as the chemical in-

dustry in South Korea (Choi and Levchenko, 2021). The rationale for infant industry

protection is that a newer, smaller domestic industry cannot survive against mature

foreign competitors who have a superior technology. Protection provides the infant

industry the time to develop so it can compete in the world market.1

In developing economies, there are of course many infant industries, so a question

then is what are the prerequisites for protecting an industry. The answer is that the

protection policy must pass the Mill and Bastable tests: “The Mill test requires that

the protected sector can eventually survive international competition without protec-

tion, whereas the Bastable test requires that the discounted future benefits compen-

sate the present costs of protection,” see Harrison and Rodriguez-Clare (2010).2 In

reality, assessing the costs and benefits is fraught with private information problems,

especially in a developing economy. The infant industry’s cost of production at any

point in time is known to the industry, but not the government.3

Our focus is on the private information problem in infant industry protection.

The infant industry knows when it has reduced its cost and is ready to compete with

foreign firms. When the cost is private information, the industry has an incentive to

say it has not reduced its cost so that it can continue to receive protection. We use

a dynamic mechanism-design approach to design an efficient protection policy that

results in the infant industry truthfully reporting its cost.

We develop a model where foreign firms have zero marginal cost of production

1Government support for domestic producers to compete against foreign competitors was advo-
cated by Yarranton (1677). The infant industry argument dates back to Hamilton (1791) and then
to Rae (1834), List (1841), and Mill (1848). For an intellectual history of the argument see Irwin
(1996).

2The answer has been refined over many years, from Mill (1848) and Bastable (1887, 1921) to
Meade (1955), Kemp (1960), and Succar (1987).

3For instance, items for personal entertainment, such as big screen TVs, can be recorded as
production equipment thereby giving the illusion of high cost, so government would not know the
true cost of the industry. Even in developed countries, Breyer (1982, p. 109-110) observed that in
setting tire standards, the National Highway Traffic Safety Administration needs to know the cost
of developing practical tests for tire qualities, such as blow-out resistance and stopping distance.
When firms provide the estimates, “it was easy for a firm...to produce a high cost estimate...”

2



and where a domestic industry initially has a positive marginal cost c for producing

the same good. There is a downward sloping domestic demand curve for the good.

Without protection the foreign firms will serve the entire domestic market. We assume

that there is an externality associated with free trade; we capture this via a social

cost that is increasing in imports. The domestic industry’s cost may stochastically

transition from c to zero at a Poisson arrival rate that is increasing in domestic

output. This stochastic process has the feature that the expected marginal cost of

the industry declines over time as long as it continues to produce; i.e., the process

embodies stochastic learning by doing. After the transition the industry’s cost is zero

forever. The government knows the initial cost c, but after the initial period the

government does not know the industry’s true cost. The time at which the industry

transitions from c to zero is private information and random.

We restrict the demand, learning by doing, and social cost such that the Bastable

test is satisfied. The question in our paper is how to protect the infant industry

optimally when the industry has private information. Our mechanism has access

to all instruments—tariffs, domestic production/import quotas, rewards, taxes, and

subsidies—in order to maximize social welfare. In our dynamic setting, truth telling

is achieved by conditioning future payoffs on the history of reports. That is, our

optimal mechanism offers a higher reward for reporting an early transition to zero

cost than for reporting a late transition.

Our results are as follows: The optimal protection policy is a precommitted se-

quence, from time 0 to the infinite future, of (i) domestic output and import quotas

before the report of transition to zero cost, (ii) a per-unit subsidy c, financed by a

tax on consumers, to cover the gap between domestic and foreign costs of production

before the report of transition to zero cost, and (iii) a reward at the time when the

industry reports a transition to zero cost. After the transition to zero cost, the policy

is straightforward: The domestic industry receives no subsidies and serves the entire

domestic market. Under private information, the optimal domestic output declines

(or, the optimal import quota increases) over time, before the transition to zero cost.

Facing declining subsidies, the domestic industry is incentivized via a reward to never

postpone its report of transition to zero cost. In contrast, under public information

where the government can observe the transition to zero cost, the optimal protection
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policy before the transition is a constant level of domestic output with a per-unit sub-

sidy c; there is no reward at the time of transition. Furthermore, the protection under

public information is more generous: The optimal import quota is lower than that

under private information at every point in time. This is because protection is more

costly under private information since the government has to reward the domestic

industry to induce truth telling.

We show that the optimal allocation under private information can be achieved

with a simple implementation. The government provides a fund upfront to the infant

industry and requires the industry to choose a production level from an interval that

is bounded below by the optimal domestic output. Based on the industry’s choice

of production (which is observable), the government determines the consumption tax

and import quota, which pin down the price. The information requirement on our

implementation is minimal: The industry receives no subsidy or reward other than

the initial fund and is not required to report its transition to zero cost.

Is it possible that the policy fails in the sense that it never produces a viable

domestic industry that can compete internationally? In other words, does the policy

pass the Mill test? Our model is stochastic, so passing the Mill test is a probabilistic

event. Under public information, with constant output each period and stochastic

learning by doing, the domestic industry will eventually be able to compete inter-

nationally with probability 1. Under private information, this is not the case. The

optimal policy is a declining path of domestic output, and the probability of eventual

transition to zero cost, although positive, is below 1. So, the protection policy cannot

guarantee that the domestic industry will be able to compete internationally.

The optimal protection policy under private information is not time consistent.

In our model, time inconsistency arises from incentive compatibility constraints.

Promised subsidies after t have negative effects on incentives before t, which have

to be taken into account by the time-0 government, but not by the time-t govern-

ment. As a result, the time-0 government is less willing to protect after t than the

time-t government. A future government would embark on a new path as if it were

starting at time 0. This gap between time-0 and future governments does not arise un-

der public information since the transition is observable and incentive constraints are
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not an issue. Hence, the optimal policy under public information is time consistent.4

By restricting the mechanism to choose only from stationary policies, as in the

public-information game of Matsuyama (1990), we deliver a time-consistent policy

under private information. The time-consistent domestic output is constant over time

as long as the domestic industry’s reported cost is high. With constant output in each

period, stochastic learning by doing implies that the domestic industry will eventually

transition to zero cost and be able to compete internationally with probability 1.

The time-consistent policy is suboptimal since it is in the feasible set of policies for

the unrestricted mechanism. That is, even though the time-consistent policy passes

the Mill test with probability 1, it results in lower welfare. Furthermore, the time-

consistent policy offers less protection than the public-information policy since the

industry has to be incentivized under private information to report the transition

truthfully, which increases the cost of protection.

How would a government with a limited budget choose between industries asking

for protection? An industry in our model is defined by four items: its initial cost

relative to the foreign competitor, the parameters of its stochastic learning-by-doing

function, the social cost of imports, and the demand for its product. Given the

budget and the set of industries asking for protection, we show that the shadow

value of government’s resources helps determine which industries should be protected.

Furthermore, our one-industry mechanism delivers the optimal protection policy for

each protected industry when each industry’s cost is magnified by the shadow value

of the government’s resources. We show that an industry with a higher initial cost

of production, all else equal, is protected less, i.e., lower domestic output and higher

import quota. This is because the production subsidy increases with c. In contrast,

Costinot, Donaldson, Vogel, and Werning (2015) and Bartelme, Costinot, Donaldson,

and Rodriguez-Clare (2021) show that tariffs are uniform among importing industries

despite different levels of comparative disadvantage. In their model, imports have no

social costs and specialization is complete, so all importing industries have zero output

and receive zero subsidies.

4In both cases the protection is contingent on the industry’s “effort” (domestic output) in cost
reduction, which is observable by the government. Tornell (1991) notes that contingent policy
resolves the time inconsistency issue under public information. With private information, a policy
contingent on observables does not resolve the time inconsistency.
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Finally, our paper also contributes to the methodology for solving persistent-

private-information models. The standard method in this literature (e.g., Fernandes

and Phelan, 2000) is to formulate the principal’s problem recursively and use a vector

of agent’s continuation utilities as the state variable. The first-order approach (e.g.,

Williams, 2011; Farhi and Werning, 2013) reduces the state vector to a pair: contin-

uation utilities of only the truth teller and his nearest neighbor in the type space. In

contrast, our state variable is not continuation utilities, but the domestic industry’s

cumulative probability of transition to zero cost. We can identify all of the binding

incentive constraints and substitute them into the principal’s objective function.

A few remarks are in order here. First, our model is about how, not why, to protect

the infant industry. The structural parameters are restricted to satisfy the Bastable

condition so that the industry is worth protecting. The mechanism-design approach

delivers how to protect the infant industry optimally. Second, our mechanism does

not restrict the set of available instruments. In contrast, Bardhan (1971) and Melitz

(2005) study infant industry protection under public information by comparing the

effectiveness of specific policy instruments.

2 Model

There is a unit measure of buyers with the inverse demand function p(Q), where Q

is the total quantity of the good. This could be a derived demand for an intermediate

good or final demand by consumers. A domestic industry can produce the good at

cost cq, where q ≥ 0 is the quantity produced by the domestic industry and c > 0

is the cost per unit. Foreign firms can produce the same good at zero cost. In a

laissez-faire equilibrium the foreign firms would drive out the domestic firms.

We assume that imports qf imply a social cost Γ(qf ) ≥ 0, so there is a reason to

protect the domestic industry. We impose the following assumption on Γ:

Assumption 1 Γ(qf ) is increasing and strictly convex in qf , Γ(0) = 0, and Γ′(0) = 0.

Learning by doing The domestic industry’s cost may stochastically transition

from c to zero (absorbing state) at arrival rate π(q) that satisfies:

Assumption 2 π(q) is increasing and strictly concave in q, π(0) = 0, and π′(0) <∞.
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Let Ωt denote the event that the domestic industry’s cost remains high at t; i.e.,

no transition has occurred until t. Conditional on Ωt, the probability of a transition

during time interval (t, t+ dt] is π(qt)dt, where dt > 0 is small. Denote the uncondi-

tional (i.e., as of time 0) probability of Ωt as Pr(Ωt); Pr(Ω0) = 1. The unconditional

probability decreases at the rate π(qt), so Pr(Ωt) = e−Πt , where Πt ≡
∫ t

0
π(qs)ds is

the cumulative transition up to t. The domestic industry’s marginal cost at time t,

ct, equals 0 with unconditional probability 1− e−Πt . Its mean E[ct] = ce−Πt is mono-

tonically decreasing over time. Thus, our specification is one of stochastic learning by

doing. The growth rate of E[ct] is dE[ct]/dt
E[ct]

= −π(qt), so the cost cannot be reduced

further if the domestic industry stops production.

Our environment before the transition is time invariant. That is, conditional on

event Ωt, the environment at t is identical to that at time 0. In particular, the

transition rate at t, π(qt), depends only on qt; the cumulative production before t

does not affect the conditional probability of transition in the interval (t, t + dt],

which resembles the memoryless property of stationary Markov processes. Note that

the time-invariant nature of the physical environment does not necessarily imply that

the optimal policy is time invariant.

Two remarks are in order here. First, the externality in our model is the social

cost of imports, instead of social benefit of domestic production. Although the latter

is common in the literature, our modeling choice is in the spirit of Mill (1848):

...it is essential that the protection should be confined to cases in which

there is ground of assurance that the industry which it fosters will after a

time be able to dispense with it; nor should the domestic producers ever

be allowed to expect that it will be continued to them beyond the time for

a fair trial of what they are capable of accomplishing.5

Had we modeled the externality as social benefits of domestic production, the optimal

policy would prescribe a subsidy to the domestic industry forever. Put differently,

in a dynamic model, the subsidies would continue even after the domestic industry

is ready to compete internationally and there would be no such thing as temporary

protection in Mill’s sense, by construction.

5The statement in its entirety is reprinted in Irwin (1996). Juhasz (2018) examines a case of
“natural” protection for the cotton industry in France during the Napoleonic Wars and documents
a reduction in French firms’ marginal cost.
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Second, there is no contradiction between the memoryless property and learning

by doing. The independence between the past and future, conditional on the current

state, is a property of models with a state variable and a Markovian structure. For

example, consider a stochastic version of the learning-by-doing model in Arrow (1962):

A firm’s productivity depends on the stock of aggregate capital, which is the sum of

past investments and random shocks. The capital stock is a state variable in this

model because future dynamics depend on the history through the current stock of

capital. Since a history with large investments but bad shocks can result in the

same capital stock as another history with small investments but good shocks, the

two histories imply the same productivity in the future despite different cumulative

investments. Similarly, in our model, the state at time t is the infant industry’s

cost. Conditional on cost c at t, the probability of transition to zero cost after t is

independent of cumulative output until t. In contrast, the unconditional probability

of the transition, 1 − e−Πt , depends on the history and increases over time due to

learning by doing.

2.1 Protection under public information

As a benchmark, consider the environment with public information. The govern-

ment knows when the domestic industry transitions to zero cost and precommits to a

protection policy at time 0 through a direct mechanism by choosing paths of several

variables. The government

1. provides a subsidy τt to the domestic industry and asks it to produce qt;

2. provides a subsidy τ ft to the foreign firm and asks it to produce qft ; and

3. sets a price pt per unit to be paid by each consumer and collects a tax τt + τ ft .

While the subsidy τt in each period helps the domestic industry to compete with

foreign firms, τ ft can be negative, in which case a natural interpretation is tariff.

Note that the mechanism is not restricted to choosing one instrument at a time. It

can simultaneously use tariffs, import quotas, taxes, and production subsidies. The

constraints on the direct mechanism are, for all t

1. nonnegative profits for the domestic industry—τt + ptqt ≥ ctqt—and
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2. nonnegative profits for foreign firms—τ ft + ptq
f
t ≥ 0.

The government’s utility flow is the consumer surplus minus social cost:

∫ qt+q
f
t

0

p(Q)dQ− pt(qt + qft )− (τt + τ ft )− Γ(qft ).

(In Appendix B, we extend the government’s objective function to also include the

domestic industry’s payoff and show that our results are still valid.) Given that

the government has access to taxes and subsidies in our mechanism, the price pt is

redundant. We can define an alternative tax/subsidy τ̃t = τt+ptqt and τ̃ ft = τ ft +ptq
f
t

and set the price to zero; the alternative would yield the same sequence of import

quota and domestic output.

Remark 1 Without loss of generality we can set pt = 0 with τt and τ ft adjusted

accordingly for all t ≥ 0.

Remark 2 With pt = 0, nonnegative profits for foreign firms imply τ ft ≥ 0,∀t.
Recall that positive τ f implies a subsidy to the foreign firms while negative τ f implies

a tariff. It is easy to see that it is suboptimal to subsidize the foreign firms with a tax

on domestic consumers; hence, τ ft = 0. In general, τ ft = −ptqft < 0 whenever pt > 0

so that the foreign firms’ rents are completely extracted.

Remark 3 With pt = 0 and τ ft = 0, nonnegative profits for the domestic industry

imply τt ≥ cqt before the transition to zero cost. It is suboptimal to provide rents to

the domestic industry—τt − cqt > 0—financed by a tax τt on consumers. The direct

mechanism can internalize the learning benefits and social costs through the sequence

of domestic output qt and imports qft . Thus, τt = cqt before the transition.

The above three remarks imply that even though the mechanism has access to all

instruments, a subset of instruments—domestic production/import quota and subsidy

to the infant industry financed by a tax on consumers—is sufficient to describe the

optimal protection policy. Other instruments are redundant. For the rest of this

section, we set pt = 0 and τ ft = 0 ∀t, and τt = cqt before the transition.

It is useful to divide the government’s problem into two parts: (i) after the do-

mestic industry has transitioned to zero cost and (ii) before the domestic industry

has transitioned.
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After the transition, the domestic industry and the foreign firms are equally effi-

cient: The marginal cost is 0 for both. The government’s problem is a sequence of

static problems, each of which is to

max
q,qf ,τ

∫ q+qf

0

p(Q)dQ− τ − Γ(qf ) s.t. τ ≥ 0.

Since the domestic firm need not be subsidized after the transition, it is optimal to

set τ = 0. Furthermore, since imports impose a social cost, it is optimal to set the

import quota to zero and q = p−1(0): The domestic output is such that the marginal

utility of consumption equals the marginal cost, which is 0. Denote the optimal value

in the above problem as

S ≡
∫ p−1(0)

0

p(Q)dQ.

Note that S is the flow of consumer surplus in each period after the transition and it

is also the flow of social surplus.

Before the transition to zero cost, the government’s infinite-horizon problem is

max
qt,q

f
t

E

[∫ T

0

e−rt

(∫ qt+q
f
t

0

p(Q)dQ− cqt − Γ(qft )

)
dt+

∫ ∞
T

e−rtSdt

]
, (1)

where T is the random transition time, and
∫ qt+qft

0
p(Q)dQ − cqt − Γ(qft ) and S are

the government’s payoff flows at t < T and t ≥ T , respectively. Note that qft affects

only the payoff flow at t, while qt affects not only the payoff flow but also the random

variable T . Consequently, the optimal qft before the transition is a solution to a static

optimization problem, while the optimal qt requires a dynamic analysis and is the

focus of this paper.

Import quota For any given qt, the optimal import quota is a solution to

max
qft

∫ qt+q
f
t

0

p(Q)dQ− Γ(qft ).
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The first-order condition for the optimal qf∗t is

Γ′(qf∗t ) = p(qt + qf∗t ), (2)

which implicitly defines qf∗t as a stationary function of qt. We denote this function as

qf∗t = qf (qt).

Lemma 1 (Import quota) qf (q) is decreasing in q but total quantity q + qf (q) is

increasing in q.

The total q + qf (q) varies with q. The substitution between q and qf is imperfect

in the optimal protection policy even though consumers view the domestic output

and imports as perfect substitutes. When q is decreased, qf is increased, but this

increase is less than one-for-one because the marginal social cost Γ′ increases with qf .

Static protection When the government cares about only the current payoff

flow,
∫ q+qf (q)

0
p(Q)dQ− cq, the optimal domestic output qstat is a solution to

p(q + qf (q)) = c. (3)

The government internalizes the social cost of imports, but not the stochastic learning-

by-doing benefits.

Dynamic protection Let

U(q) ≡
∫ q+qf (q)

0

p(Q)dQ.

Note that U(q) is just a generalization of S and describes the consumers’ utility flow

in each period before the transition to zero cost.
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After changing the order of integration, we can rewrite the objective in (1) as∫ ∞
0

e−rt
[
Pr(T ≥ t)

(
U(qt)− Γ(qf (qt))− cqt

)
+ (1− Pr(T ≥ t))S

]
dt

=
S

r
+

∫ ∞
0

e−rt Pr(T ≥ t)
(
U(qt)− S − Γ(qf (qt))− cqt

)
dt

=
S

r
−
∫ ∞

0

e−rt−Πt
(
S − U(qt) + Γ(qf (qt)) + cqt

)
dt, (4)

where Pr(T ≥ t) ≡ e−Πt is the probability that the transition has not arrived until t,

and S−U(qt) is the deviation of consumers’ utility flow prior to transition relative to

the flow post transition. We note two features of (4). First, the optimal qt involves a

dynamic tradeoff due to learning by doing: qt affects not only the current payoff, but

also future payoffs through probabilities e−Πs ,∀s > t. Second, because Γ(qf (qt)) and

cqt in (4) are, respectively, the deviations of social cost of imports and production

subsidy from their post-transition counterparts, 0 and 0, the objective before tran-

sition is written as the post-transition value, S
r
, minus three losses: 1) deviation of

consumers’ utility, 2) social cost of imports, and 3) production subsidy.

The first two losses always show up together in our analysis. Denote their sum by

L(q) ≡ S − U(q) + Γ(qf (q)) ≥ 0.

It is easy to show that L(q) is convex and decreasing in q: The Envelope theorem

implies that L′(q) = −p(q + qf (q)) = −Γ′(qf (q)) < 0, where −Γ′ is increasing in

q because Lemma 1 shows qf (q)) is decreasing in q. Higher q increases consumers’

utility by p(q + qf (q)); equivalently, higher q decreases the social cost by Γ′(qf (q)).

Furthermore, L(p−1(0)) = 0; i.e., when the domestic output is p−1(0), which occurs

after the transition to zero cost, there is no loss and the flow of social surplus is S.

Before characterizing the dynamic protection policy, it is useful to know whether

the domestic industry is worth protecting, i.e., whether the benefit from protection

exceeds the cost. This amounts to checking whether the industry satisfies the

Bastable condition: c < c̄ ≡ −L′(0) + π′(0)
L(0)

r
. (5)

To understand the condition, consider a temporary variation around the scenario
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where the domestic industry produces zero output forever: Increase q0 from 0 to

ε > 0 but fix qt = 0 for all t > 0. A marginal increase in q0 costs the government c

to protect. The benefits are: (i) an immediate marginal social gain of −L′(0) since

imports at t = 0 are decreased and (ii) an increase in the probability of transition

resulting in a gain forever yielding the second term π′(0)L(0)
r

.6

Recall from Assumption 2 that π′(0) < ∞. If π′(0) = ∞, then c̄ = ∞ and the

Bastable condition will be satisfied by the industry no matter how high its cost is.

For the rest of this section, we will assume that (5) is satisfied: c < c̄ <∞.

Theorem 1 below characterizes the optimal policy under public information. Since
S
r

is a constant, we will minimize the sum of the three losses in (4).

Theorem 1 (Permanent protection under public information) Assume c < c̄.

1. Before the transition to zero cost, the optimal domestic output is time invariant:

qt = qpub > 0, where

qpub ∈ arg min
L(q) + cq

r + π(q)
=
S − U(q) + Γ(qf (q)) + cq

r + π(q)
. (6)

2. qpub > qstat.

Theorem 1 has four implications. First, the optimal protection policy is time

invariant because if the domestic industry has not transitioned to zero cost until t,

the continuation problem faced by the government at t is identical to that at time

0. Hence, whatever is optimal at time 0 will continue to be optimal at time t,

conditional on high cost at t. Thus, the protection policy under public information

is time consistent. However, as we show in the next section, if the domestic industry

privately observes the transition to low cost, this is no longer the case.

Second, since the domestic industry’s cost is public information, optimality com-

bined with the stationary nature of the environment requires that the protection

continues so long as the industry has not transitioned to zero cost. The perpetuity of

protection (conditional on high cost) implies that the transition will occur eventually

6The definition of c̄ includes the function L(·), which has import quota qf that depends (endoge-
nously) on domestic output. However, the import quota at zero domestic output is easy to compute
from the primitives of the model using equation (2): Γ′(qf ) = p(qf ).
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with probability 1. In other words, the protection policy would pass the Mill test

eventually and the domestic industry would be able to compete internationally. (As

noted earlier, passing the Mill test is a probabilistic event in our model since learning

by doing is stochastic.)

Third, the domestic industry is offered protection (i.e., qpub > 0) if and only if

c < c̄. That is, if the domestic industry is “too inefficient” relative to the foreign

firms, then it is optimal to let the imports serve the entire domestic demand forever.

In the minimization problem (6), higher c raises the cost of protection and reduces

qpub. If c ≥ c̄, then the loss in (6) is weakly increasing at q = 0, so 0 ∈ arg min L(q)+cq
r+π(q)

.7

Fourth, qpub is higher than qstat because of learning by doing. Static and dynamic

optimization under public information have the same cost of protection: Higher do-

mestic output means higher subsidy to the industry. However, there is only one

benefit of higher q in the static case: reduction in social cost by Γ′(qf (q)). In the

dynamic case, higher q also leads to faster learning by doing (higher π(q)) and de-

creases the present value of the social loss. This additional benefit raises the optimal

protection level qpub above qstat.

3 Dynamic protection under private information

Our model setup is identical to that in Section 2 except for the presence of private

information. We incorporate private information as follows: The government knows

the domestic industry’s initial cost c but does not observe when the transition to zero

cost occurs. The transition is private information to the domestic industry. Note

that zero-cost is an absorbing state, so the private information is persistent. The

7The Bastable condition can also be seen by considering a permanent variation around a station-

ary policy: Increase domestic output from 0 ∀t to ε > 0 ∀t. Since the loss is L(q)+cq
r+π(q) in a stationary

policy, the impact of the increase in domestic output is:

dL(q)+cqr+π(q)

dq
|q=0 =

c

r + π(q)
|q=0 −

(
−L′(q)
r + π(q)

|q=0 +
(L(q) + cq)π′(q)

(r + π(q))2
|q=0

)
,

=
c

r
−
(
−L′(0)

r
+
L(0)π′(0)

r2

)
.

The three terms correspond to the cost and two benefits in the temporary variation noted above,
but with an amplification factor 1

r due to the permanent increase in domestic output. The Bastable
condition is not affected by this factor.
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government observes the domestic output and imports.

The government precommits to a protection policy at time 0 through a direct

mechanism by choosing paths of several variables. The government

1. provides a subsidy τt to the domestic industry and asks it to produce qt;

2. provides a subsidy τ ft to the foreign firm and asks it to produce qft ;

3. sets a price pt for consumers and collects a tax τt + τ ft ; and

4. provides a one-time reward Mt to the domestic industry, financed by a lump-sum

tax, if the domestic industry reports a transition to zero cost at t.8

Under the revelation principle, we can focus on direct mechanisms that are incentive

compatible, i.e., protection polices that induce the domestic industry to report its

transition time truthfully. The constraints on the mechanism are

1. nonnegative profits for the domestic industry—τt + ptqt ≥ ctqt;

2. nonnegative profits for foreign firms—τ ft + ptq
f
t ≥ 0; and

3. incentive compatibility.

Several observations from Section 2 carry over to the private-information setup.

As in Remarks 1-3, we can set pt = 0 and τ ft = 0 for all t, and τt = cqt before the

transition to zero cost. Again, it is useful to consider the government’s problem before

and after the transition. After the transition, there are no incentive problems and

the domestic industry is as efficient as the foreign firms (qf = 0), there is no need to

subsidize the domestic industry (τ = 0), and q = p−1(0); if the transition occurs at

T , the government’s continuation value is S
r
−MT .9

8The reward can be either a one-time payment at time t or, equivalently, a sequence of constant
payments after t with its present value being Mt.

9Technically, we have to make sure these simplifications of policy instruments do not violate any
incentive constraints. The formal analysis requires messy notation, but it is easy to see (i) setting

pt = 0 and τft = 0 for all t does not affect the domestic industry’s payoff whether it cheats or
not, (ii) setting τt = cqt before the transition reduces the domestic industry’s payoff from cheating,
thus relaxing the incentive constraint, and (iii) setting post-transition subsidy τ = 0 is innocuous
since the subsidies, if any, can be subsumed into the one-time reward M , so the domestic industry’s
continuation payoff upon transition does not change.
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Import quota As in Section 2, qft affects only the flow payoff at t, so the optimal

import quota is a stationary function of domestic output. Equation (2) and Lemma

1 continue to hold in the private-information case. The function qf (q) is identical to

the one in the public-information case since, conditional on q, there are no dynamic

or incentive problems associated with choosing qf .

Thus, the government’s objective at time 0 is

E

[∫ T

0

e−rt

(∫ qt+qf (qt)

0

p(Q)dQ− cqt − Γ(qf (qt))

)
dt+

∫ ∞
T

e−rtSdt− e−rTMT

]
,

where the first term in parentheses is the flow payoff before the transition and T is

the random transition time. Using E
[
e−rTMT

]
=
∫∞

0
e−rt−Πtπ(qt)Mtdt and (4), we

can rewrite the objective as

S

r
−
∫ ∞

0

e−rt−Πt (L(qt) + cqt + π(qt)Mt) dt. (7)

So the government’s problem is to maximize (7) subject to incentive compatibility.

As in Section 2, we will exclude S
r

from our analysis and minimize the losses in (7).

Remark 4 Recall that our direct mechanism has a nonnegative-profits constraint in

each period for the domestic industry rather than one participation constraint at time

0. The private-information problem becomes trivial under the latter: The optimal

domestic output is the public-information solution qt = qpub,∀t. To see this, note

that
∫∞

0
e−rt−Πtπ(qt)Mtdt in (7) is the total discounted cost of rewarding the domestic

industry. The government can collect this money upfront, in which case the net cost

of reward is zero.10 After removing this cost, the objective in (7) is the same as that

in (4). Upfront payment is feasible under the time-0 participation constraint because

the domestic industry’s discounted value at t = 0 is 0. Under the period-by-period

constraint, however, upfront payment is no longer feasible and the private-information

problem becomes nontrivial.

10Net cost of reward is also zero in Dinopoulos, Lewis, and Sappington (1995). In their two-period
model of strategic trade policy, the incentive constraints do not bind and the optimal allocation under
private information is the same as that under public information.
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Incentive compatibility If the industry transitions at time t but decides to

postpone the report of the transition until t̃ > t, then it continues to receive subsidies

from t to t̃. The payoff from cheating is
∫ t̃
t
e−r(s−t)cqsds + e−r(t̃−t)Mt̃. Incentive

compatibility requires that

Mt ≥
∫ t̃

t

e−r(s−t)cqsds+ e−r(t̃−t)Mt̃, ∀t ≥ 0, ∀t̃ > t. (8)

In particular, when t̃ =∞ the above constraint becomes

Mt ≥
∫ ∞
t

e−r(s−t)cqsds, ∀t ≥ 0. (9)

There is no incentive to cheat in the other direction, i.e, report a transition to zero

cost without an actual transition. We demonstrate this in Lemma 7 in Appendix A.

In the following analysis, we consider a “relaxed” problem, in which we minimize

the losses in (7) subject to (9). That is, we replace incentive constraints (8) by (9), a

strict subset of those in (8). The following lemma shows that (9) binds for all t ≥ 0

in the relaxed problem, which implies (8) holds for all t < t̃ in the original problem.

Lemma 2 (Relaxed problem) Minimizing the losses in (7) subject to (9), the optimal

solution has

Mt =

∫ ∞
t

e−r(s−t)cqsds, ∀t ≥ 0. (10)

Thus, (8) holds as an equality, and the solution to the relaxed problem solves the

original problem.

Lemma 2 allows us to simplify the losses in (7) as∫ ∞
0

e−rt−Πt (L(qt) + cqt + π(qt)Mt) dt

=

∫ ∞
0

e−rt−Πt(L(qt) + cqt)dt+

∫ ∞
0

π(qt)e
−rt−Πt

(∫ ∞
t

e−r(s−t)cqsds

)
dt

=

∫ ∞
0

e−rt−Πt(L(qt) + cqt)dt+

∫ ∞
0

(
e−rs

∫ s

0

π(qt)e
−Πtdt

)
cqsds

=

∫ ∞
0

e−rt−Πt(L(qt) + cqt)dt+

∫ ∞
0

(1− e−Πt)e−rtcqtdt
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=

∫ ∞
0

e−rt−ΠtL(qt)dt+

∫ ∞
0

e−rtcqtdt, (11)

where the change of the order of integration in the third line follows from Fubini’s

theorem. Unlike equation (4), where the probability e−Πt appears in front of both

the social cost L(qt) and the production subsidy cqt, here the probability e−Πt is only

in front of L(qt). This is because the government does not observe the transition and

must offer a reward to induce truth-telling. The reward Mt equals the production

subsidy to the domestic industry had it cheated after transition. So it is as if the

industry receives the subsidy both before and after transition; i.e., the subsidy is

unconditional. Thus, private information makes protection more costly.

Differentiating (11) with respect to qt ≥ 0, we derive the first-order condition as

e−rt−ΠtL′(qt)−
∫ ∞
t

e−rs−Πsπ′(qt)L(qs)ds+ e−rtc ≥ 0,

or simply

−e−ΠtL′(qt) +

[∫ ∞
t

e−r(s−t)−ΠsL(qs)ds

]
π′(qt) ≤ c, (12)

which holds as an equality if qt > 0. The right-hand side of (12) is the cost of protec-

tion: For each unit of output produced by the domestic industry, the government pro-

vides a subsidy c. On the left-hand side of (12) are the two benefits of protection: The

first term is the reduced social cost of imports when qt is higher (−L′(qt) = Γ′(qf (qt))),

while the second term represents the benefit of learning by doing. Specifically, higher

qt increases the probability of transition and
∫∞
t
e−r(s−t)−ΠsL(qs)ds is the discounted

social gain associated with this event.

To determine whether the industry is worth protecting at all (i.e., the Bastable

condition) under private information, consider the benefit from protection in equation

(12) at t = 0, i.e., a temporary variation q0 = ε > 0 but qt = 0 for all t > 0. The

benefit as of time 0 would be the sum of the marginal social gain, −e0L′(0), and

the permanent gain due to the increase in probability of a transition to zero cost[∫∞
0
e−rsL(0)ds

]
π′(0). The sum of the two benefits is exactly the same as in the

public-information model (see description below equation (5)). For the benefit to

exceed the cost of protection, c must be less than c̄ ≡ −L′(0) + π′(0)L(0)
r

. This is the
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same as the Bastable condition (5) under public information.11

Lemma 3 (Bastable condition) The optimal protection satisfies qt = 0 ∀t ≥ 0 if and

only if c ≥ c̄.

Hereafter, we shall impose the Bastable condition, c < c̄ < ∞, so that the optimal-

protection problem is nontrivial.

A sequential problem Using (11), the government’s problem can be written

as an optimal-control problem with state variable Πt and control variable qt:

L(Π) ≡ min
{qt}t≥0

∫ ∞
0

e−rt−ΠtL(qt)dt+

∫ ∞
0

e−rtcqtdt (13)

s.t.
dΠt

dt
= π(qt), Π0 = Π.

The state variable Π represents the accumulated learning prior to the current period.

Although Π0 = 0, we treat Π0 = Π as any nonnegative number for the rest of the

paper so that we can use [0,∞) as the state space in a recursive formulation.

Differentiating the objective function (13) with respect to Π yields

L′(Π) = −
∫ ∞

0

e−rt−ΠtL(qt)dt, (14)

where {qt}t≥0 is the path of optimal controls in problem (13). Equation (14) implies

L′(Π) < 0 since it cannot be the case that the losses L(qt) are zero for all t ≥ 0:

Zero losses forever would imply the domestic output is the same before and after the

transition to zero cost.12

In the rest of this section, we characterize the optimal solution using a recursive

formulation. We show that the optimal domestic output is monotonically decreasing

11One might wonder why M0, which is the reward for reporting a transition at time 0 under
private information, does not appear in the Bastable condition. It implicitly does: As noted earlier,
the subsidy is unconditional under private information. For the temporary variation at time 0, the
difference between the subsidy under private information and that under public information is M0.
Since M0 = cε and the probability of transition at 0 is π(ε), the expected value of reward for truthful
reporting is cεπ(ε), a higher order infinitesimal than ε. So, this extra cost does not have a first-order
effect and the Bastable condition remains the same under private- and public-information scenarios.

12If L(qt) = 0,∀t, then qt = p−1(0),∀t, which clearly violates the first-order condition (12). Since
L′(qt) = L(qs) = 0,∀s ≥ t, the left side of (12) is 0 and is less than the right side, but (12) needs to
hold as an equality because qt = p−1(0) > 0.
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in the duration of protection. We also derive sufficient conditions under which pro-

tection is offered initially but terminated in finite time even if the industry has not

transitioned to zero cost.

3.1 A recursive formulation

The optimal-control problem has a recursive formulation with Π as the state

variable. The Hamilton-Jacobi-Bellman equation is

rL(Π) = min
q≥0

e−ΠL(q) + cq + L′(Π)π(q). (15)

The right-hand side of (15) is convex in q because L is convex, L′ < 0, and π is

concave. Therefore, the following first-order condition for q ≥ 0 is both necessary

and sufficient for optimality:

−e−ΠL′(q)− L′(Π)π′(q) ≤ c, (16)

with an equality if q > 0. Note that substituting (14) into (12) also yields (16).

Lemma 4 below shows that the policy function q(Π) defined by (16) is monotonic.

Lemma 4 (Monotonicity of domestic output) dq
dΠ
< 0 as long as q(Π) > 0.

The intuition for Lemma 4 can be easily seen if we remove the dynamic benefit

of protection from (16) (second term on the left side). In this case, equation (16)

reduces to −e−ΠL′(q) = c. As Π increases, the benefit of protection is small, and

hence the government is less willing to protect.

Our first private-information result is that optimal protection is always less than

that under public information, monotonically decreasing over time, and disappears

in the long run. See Figure 1 for a numerical example.

Theorem 2 (Decreasing protection under private information) The optimal {qt}∞t=0

satisfies the following:

1. qt ≡ q(Πt) is decreasing over time, limt→∞ qt = 0, and limt→∞ π(qt) = 0.

2. q0 ∈ (qstat, qpub).
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A direct consequence of Lemma 4 is that the optimal domestic output is decreas-

ing over time because Πt is increasing over time due to learning by doing. De-

clining qt (and Mt) ensures that the industry does not postpone report of tran-

sition. The intuition for q0 ∈ (qstat, qpub) is as follows: At t = 0, (16) becomes

−L′(q0)−L′(0)π′(q0) = c, so q0 is an increasing function of −L′(0). If −L′(0) were 0,

then q0 collapses to qstat because −L′(q0) = p(q0 + qf (q0)) = c is identical to condi-

tion (3) for the static optimization. On the other hand, qt decreasing over time and

q0 < qpub imply qt < qpub,∀t. That is, the industry gets less protection under private

information at all times. This is not surprising since the cost of protection under

private information is more than that under public information (see (11) and (4)).

Our next result shows that an eventual transition is not guaranteed under the

optimal protection policy. That is, the protection policy will fail the Mill test with

positive probability.

Theorem 3 (Mill test) limt→∞ e
−Πt = c/c̄ < 1.

Under private information, the probability that the domestic industry would even-

tually transition to zero cost is positive, but it could be less than 1. That is, the

protection policy passes the Mill test with positive probability but cannot pass it

with certainty. So, the protection policy cannot guarantee that the industry will be

able to compete internationally. Recall that under public information, the optimal

domestic output is stationary, so the arrival rate of transition is constant π(qpub) > 0

and the industry will eventually transition to zero cost with probability 1.

Our third result provides sufficient conditions for the optimal protection to be

temporary. That is, the optimal policy lets the foreign competitors take over the entire

market forever after a threshold number of periods even if the domestic industry’s

cost remains high.

Theorem 4 (Temporary protection)

1. If either L′′(0) > 0 or π′′(0) < 0, then qt > 0 for all t.

2. If there exists ε > 0 such that L′′(q) = 0 and π′′(q) = 0 for all q ∈ (0, ε), then qt

reaches 0 in finite time and stays there.
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Figure 1: The top panel shows the optimal time path of domestic output qt. The
middle panel adds the optimal time path of imports qft and total qt+ qft . The bottom
panel plots the reward to the domestic industry as a function of its reported transition
time. In this numerical example, r = 1, c = 0.5, π(q) = 2q, Γ(qf ) = (qf )2, and

p(Q) = 1−Q. Then, qf (q) = 1−q
3

, p−1(0) = 1, and S =
∫ 1

0
p(Q)dQ = 1/2.
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When both L(q) and π(q) are linear in q for small q ∈ (0, ε), they will enter the

linear range eventually since q is decreasing over time. Part 2 of Theorem 4 says that

local linearity implies the bang-bang property, so q will be set to zero in finite time.

(See linear example in Section 6.)

3.2 Implementation

The optimal allocation in the previous section can be implemented through a one-

time cash transfer to the domestic industry at t = 0 and a consumption tax. Recall

that the socially optimal outputs are {(qt, qf (qt))}t≥0 before transition and (p−1(0), 0)

afterward. The implementation scheme is as follows:

1. The government provides a fund M0 ≡
∫∞

0
e−rtcqtdt to the domestic industry

at time 0 and mandates that it choose output from interval [qt, p
−1(0)], ∀t ≥ 0.

2. At any time t, the domestic industry produces q̃t ∈ [qt, p
−1(0)] and the govern-

ment observes q̃t.

3. Then the government sets consumption tax τct ≡ p(q̃t + qf (q̃t)) per unit and

import quota qf (q̃t). The tax revenue is lump-sum rebated to the consumers.

The implementation is simple: The government neither collects the report of

privately observed transition nor offers subsidies or rewards to the domestic industry

except the initial M0.

Theorem 5 (Implementation) Facing the constraint q̃t ∈ [qt, p
−1(0)], it is optimal

for the domestic industry to replicate the allocation in the direct mechanism, i.e.,

produce qt before the transition and p−1(0) after the transition.

To understand our implementation, four features are worth noting. First, in the

presence of positive imports the competitive market price is 0. The total quantity

demanded is given by the inverse demand curve p(Q) evaluated at “price” τc. At

time t, τct is set to p(q̃t + qf (q̃t)), so clearly Qt = q̃t + qf (q̃t). The domestic industry

supplies q̃t and the foreign firms supply qf (q̃t).
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Second, before transition time T , the domestic industry’s asset holding, Bt ≥ 0,

evolves as a function of domestic output q̃t:

dBt

dt
= rBt − cq̃t, B0 = M0. (17)

For the domestic industry, increasing q̃t (i) depletes the fund at t and (ii) reduces the

odds of depleting the fund in the future due to learning by doing. The government

has already internalized the benefit of learning in setting qt, so the domestic industry

cannot gain by producing more than qt. However, the domestic industry does not take

into account the reduced social cost of imports, which is an externality internalized

only by the government. Therefore, the domestic industry prefers an output below

the socially optimal qt. The constraint q̃t ∈ [qt, p
−1(0)] ensures that the industry’s

choice is qt, which is verified by Theorem 5.

Third, one can easily verify that Mt defined in (10) satisfies the budget constraint

(17) when q̃t = qt, meaning that the industry’s asset holding Bt is equal to Mt. If the

transition arrives at T , then MT can be interpreted as a reward from the government.

Fourth, after the transition at T , the domestic industry is indifferent to any output

in the interval [qt, p
−1(0)] and does not gain by deviating from the socially optimal

p−1(0). If the domestic industry produces p−1(0), then the consumption tax and

imports are both 0, and the social welfare is maximized.

4 Time consistency

The optimal protection policy under private information is not time consistent.

To see this, consider the optimal path where the domestic industry reports high cost

at t; as of time 0, this event occurs with probability e−Πt . Suppose a new government

arrives at t and replaces the old government. The new government faces a mechanism-

design problem that is identical to the problem at time 0 because the only relevant

information for the new government at t is that the domestic industry’s cost is high.

The probability e−Πt , based on the history of the optimal path, does not affect the

new government’s problem, because the new government arrives after the high-cost

event is realized. Consequently, a new government will reset the time-t protection to

q0, rather than follow the old path.
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We have time-inconsistency because government’s preferences are dynamically

inconsistent under private information. Let time-0 government’s losses be L(0), and

let time-t government’s losses be L(t).

L(0) =

∫ ∞
0

e−rs−ΠsL(qs)ds+

∫ ∞
0

e−rscqsds,

L(t) =

∫ ∞
t

e−r(s−t)−(Πs−Πt)L(qs)ds︸ ︷︷ ︸
A

+

∫ ∞
t

e−r(s−t)cqsds︸ ︷︷ ︸
B

.

So,

L(0) =

∫ ∞
0

e−rs−ΠsL(qs)ds+

∫ ∞
0

e−rscqsds,

=

∫ t

0

e−rs−ΠsL(qs)ds+

∫ t

0

e−rscqsds+ e−rt−Πt
(
A+ eΠtB

)
.

Both governments want to minimize A and B, but setting A = 0 and B = 0 simul-

taneously is not feasible. The tradeoff between A and B depends on their respective

weights in the objective functions. While the time-t government puts equal weights

on A and B, the time-0 government puts more weight on B than on A; i.e., their

preferences are not dynamically consistent.13 The time-0 government is less willing

to tolerate the loss of B than the time-t government because promised subsidies after

t have negative effects on incentives before t, which have to be taken into account by

the time-0 government, but not by the time-t government. Consequently, the time-t

government’s optimal domestic output {qs}s≥t is greater than the time-0 government’s

output for s ≥ t. That is, the time-t government would offer more protection and not

continue the path of the time-0 government.

Under public information,

L(0) =

∫ ∞
0

e−rs−Πs (L(qs) + cqs) ds,

L(t) =

∫ ∞
t

e−r(s−t)−(Πs−Πt) (L(qs) + cqs) ds,

13This is similar to hyperbolic discounting as in Laibson (1997), for instance.
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so L(0) =
∫ t

0
e−rs−Πs (L(qs) + cqs) ds + e−rt−ΠtL(t). Thus, both time-0 and time-t

governments want to minimize L(t) and their preferences are dynamically consistent.

One way to obtain a time-consistent policy under private information is to im-

pose stationarity: Restrict the direct mechanism to choose qt ≡ q,∀t for some q.

Matsuyama (1990) adopts a similar method in the context of a repeated public-

information game. The domestic output that minimizes the government’s loss under

stationarity is given by

q∗ ∈ arg min
q

∫ ∞
0

e−rt−ΠtL(q)dt+ c

∫ ∞
0

e−rtqdt =
L(q)

r + π(q)
+
c

r
q. (18)

The time-consistent policy, clearly, is permanent: The domestic industry is pro-

tected as long as its reported cost remains high. Since domestic output is constant,

the reward at the time of transition, given by the incentive compatibility constraint

(10), is also constant. A constant reward is incentive compatible due to a positive

rate of time preference in our model: If the transition occurs at t, then reporting the

truth and receiving the reward at t weakly dominates postponing the report.

Unsurprisingly, the welfare under the time-consistent policy q∗ is less than that

under the optimal {qt}∞t=0 in Theorem 2 since the time-consistent policy is feasible in

problem (13). The two time paths of protection, however, cannot be ranked. In fact,

q∗ is initially lower but eventually higher than qt.

Theorem 6 (Time-consistent protection) limt→∞ qt = 0 < q∗ < q0.

Since q∗ maximizes the same objective as {qt}∞t=0, an important criterion for the

path of q∗ is that it should stay close to {qt}∞t=0. Since one path is constant and the

other is decreasing over time, this is achieved by letting the two time paths cross at

some t > 0. Choosing either q∗ = 0 or q∗ ≥ q0 will push them further apart.

Finally, it is easy to see that the objective (18) puts a higher weight on the subsidy

than (6) under public information. Higher protection cost in (18) implies that the

time-consistent policy under private information offers less protection, i.e., q∗ < qpub.

Note that, similar to the public-information setup, constancy of domestic output

in the time-consistent policy implies that the domestic industry will eventually be

able to compete internationally with probability 1. However, passing the Mill test

with certainty is not optimal.
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Another approach is to study the time-consistent mechanisms that may not be

stationary. This is challenging because we cannot apply the revelation principle,

which holds only under full commitment. We conjecture that the mechanism will

let time-0 government send noisy reports to future governments. Because a future

government cannot be sure that an industry reporting high cost does indeed have high

cost, future government’s belief about the industry type becomes a state variable.

The reports from the time-0 government will make future governments believe in a

higher probability of lying by the industry. This belief mitigates future governments’

incentives to increase protection. In other words, by introducing deteriorating beliefs,

the time-0 government can make future governments’ objective align with a declining

path {qt}t≥0.

5 Which industries to protect?

Our analysis in the previous sections was about protecting one industry optimally

when the government has access to unlimited resources. Suppose the government re-

ceives requests from multiple industries for protection. With unlimited resources, the

government would protect all industries that satisfy the Bastable condition and the

optimal protection of one industry would not affect the protection of other industries.

With limited resources, which industries should be protected? In this section, we

assume that the government’s resources are limited by F . All other features of our

environment in Section 3 are retained in this section.

First, consider a single-industry problem under limited resources: The total sub-

sidy and reward cannot exceed F . Thus,

F ≥
∫ ∞

0

e−rt−Πt (cqt + π(qt)Mt) dt

=

∫ ∞
0

e−rtcqtdt. (19)

The government wants to minimize the losses in (11), subject to (19). The La-

grangian of this problem is∫ ∞
0

e−rt−ΠtL(qt)dt+

∫ ∞
0

e−rtcqtdt+ θ

(∫ ∞
0

e−rtcqtdt− F
)
, (20)
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where θ ≥ 0 is the Lagrange multiplier on constraint (19). Problem (20) is equivalent

to an otherwise identical private-information problem except the domestic industry’s

cost is (1 + θ)c instead of c. That is, a limited-resource model can be transformed

into an unlimited-resource model with a magnified cost. Under limited resources, the

Bastable condition is (1 + θ)c < c̄, which could be violated even if c < c̄. Note that c̄

is the same in the two problems.

Second, consider a problem with multiple industries, indexed by i ∈ {1, 2, ..., I},
and limited resources. (An industry in our model is defined by the 4-tuple: c, π(·),
Γ(·), and p(·).) The government’s budget constraint becomes

F ≥
∫ ∞

0

e−rt

(
I∑
i=1

ciqit

)
dt, (21)

where ci and qit are, respectively, the cost and domestic output in industry i. Con-

ditional on the multiplier θ on (21), the optimal protection of each industry is still

captured by problem (20) but with industry-specific 4-tuple. If F decreases (or there

are more industries competing for F ), then θ will increase, which is isomorphic to

magnifying the cost in each industry by the same proportion.

The multiplier θ helps the government decide which industries should be protected.

For industry i, the government can use the magnified cost (1+θ)ci and rule it out from

protection if its magnified cost exceeds c̄i. That is, industry i satisfies the Bastable

condition if

(1 + θ)ci < c̄i. (22)

Finally, since problem (20) is identical to our benchmark model in Section 3, all

the qualitative properties in Section 3 continue to hold. In particular, the optimal

amount of protection will decline over time in every protected industry.

5.1 Determining the “magnifier” θ

We use a bisection method to solve for θ. The algorithm is as follows:

• Initialization: Set θ to a large number and θ = 0.

• Choose a stopping criterion ε.
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• Step 1. Set θ = (θ + θ)/2. For i ∈ {1, 2, ..., I},

– if industry i satisfies the Bastable condition (22), then solve for the optimal

protection policy {qit}∞t=0 for i with its production cost magnified from ci

to (1 + θ)ci, and with its industry-specific characteristics;

– otherwise, set qit = 0 for all t ≥ 0.

• Step 2.

– If F >
∫∞

0
e−rt

(∑I
i=1 c

iqit

)
dt+ ε, then reset θ = θ and go to Step 1;

– if F <
∫∞

0
e−rt

(∑I
i=1 c

iqit

)
dt− ε, then reset θ = θ and go to Step 1;

– otherwise, stop and report solution at θ = (θ + θ)/2.

6 A linear example

The demand for the product is inelastic: A unit measure of agents wants to

consume one unit of the product each. The social cost of imports is linear: Γ(qf ) ≡
γ ·qf , γ > 0. The Poisson process is also linear: π(q) ≡ π ·q, π > 0. For the industry to

be protected, the parameters have to satisfy the Bastable condition: c < c̄ ≡ π
r
γ + γ.

With inelastic demand, the optimal protection policy implies qt + qft = 1 for all t.

After the transition, it is optimal to set q = 1 forever since there is no reason to incur

the social cost of imports. Recall that S is the flow of consumer surplus (also the social

surplus) after the transition at T and the government’s payoff is
∫∞
T
e−rtSdt−e−rTMT .

Prior to the transition at T , the government’s payoff is
∫ T

0
e−rt(S−γ ·(1−qt)−cqt)dt.

The government’s objective at time 0 is to maximize

E

[∫ T

0

e−rt (S − γ · (1− qt)− cqt) dt+ e−rT
(
S

r
−MT

)]
, (23)

subject to incentive compatibility (10).

As is typically the case in linear continuous-time optimal-control problems, the

optimal path for qt is a step function.
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Theorem 7 (Bang-bang protection) The optimal path of qt is given by

qt =

{
1, if t ≤ t̄;

0, if t > t̄,
(24)

where t̄ is the maximal duration of protection for the domestic industry and solves

e−πt̄γ + π
γ

r
e−πt̄ = c. (25)

The reward for a transition at time t, Mt, satisfies

Mt =

{
c
r
(1− er(t−t̄)), if t ≤ t̄;

0, if t > t̄.
(26)

Note that t̄, determined at time 0, is finite and the protection ceases at t̄ even if the

industry has not transitioned to zero cost by that time. That is, qt = 0 and qft = 1

for all t ≥ t̄. With q = 1 before the transition, the probability that the industry

would transition to zero cost by time t is e−πt, so at t̄ there is a positive probability

the industry’s cost remains high. In other words, there is a positive probability the

industry would fail the Mill test.

6.1 Multiple industries and limited resources

We numerically illustrate the role of limited resources using the above linear ex-

ample with five industries. We set r = 0.05. The demand for each industry’s product

is the same: one unit, inelastic. The rest of the parameters are in Table 1.

Industry ci γi πi
1 0.1 0.6 0.6
2 0.2 0.6 0.6
3 0.1 0.2 0.6
4 0.1 0.6 0.1
5 0.2 0.4 0.1

Table 1: Parameters

The parameters in Table 1 are chosen so that ci

c̄i
is increasing in i. Industry i is

ranked higher than i+ 1 in the sense that if i+ 1 receives protection then i will also
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receive protection; see (22) for the Bastable condition. Conditional on protection,

industry i has a higher probability of passing the Mill test than industry i+ 1.

Tables 2-4 show that more industries are protected as the resources F increase.

With few resources (F = 0.10), only industry 1 is protected: The multiplier θ on the

resource constraint is high and the Bastable condition (1+θ)ci

c̄i
< 1 is satisfied only by

i = 1. With ample resources (F = 3.00), all five industries are protected.

7 Conclusion

We study infant industry protection in a dynamic model where initially the in-

dustry cannot compete with foreign firms that possess a superior technology. The

industry can stochastically reduce its cost through learning by doing, but the tran-

sition to low cost is private information. We use a mechanism-design approach and

establish that the optimal protection declines over time and can be implemented with

minimal information requirements. When the resources to protect multiple industries

are limited, we deliver a simple approach to choose which industries to protect. If

the transition to low cost is public information, then we show that it is optimal to

offer “permanent” protection: Subsidize the domestic industry until it can compete

with foreign firms. Furthermore, the optimal policy under public information is time

consistent, but under private information it is not.

A lesson from our model is that information regarding the evolution of an infant

industry is critical for the optimal protection policy. The public-information case

in our model can be viewed as one where all information regarding the industry

can be freely obtained, while the private-information case is one where obtaining

information is infinitely costly. An intermediate case, where the government can

verify the industry’s information by incurring a finite cost, is worth studying. We

conjecture that the optimal protection policy would involve periodic verification.

Our paper is the first attempt to study the dynamic incentive problems involved

in infant industry protection. We have focused on the incentive problem that the

government cannot observe the infant industry’s transition, but other incentive prob-

lems might also be plausible. For example, the government may provide funds for the

domestic industry’s R&D activities but cannot monitor how the industry uses these
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funds. The government may lack information about the domestic industry’s R&D

capability, giving the latter an incentive to misreport and receive more protection.

F = 0.10 F = 0.20 F = 0.40 F = 1.00 F = 3.00
Industry θ = 41.15 θ = 31.57 θ = 21.50 θ = 12.36 θ = 3.32

1 0.54 0.42 0.29 0.17 0.06
2 1.08 0.84 0.58 0.34 0.11
3 1.62 1.25 0.87 0.51 0.17
4 2.34 1.81 1.25 0.74 0.24
5 7.02 5.43 3.75 2.23 0.72

Table 2: Ratio (1+θ)ci

c̄i

F = 0.10 F = 0.20 F = 0.40 F = 1.00 F = 3.00
Industry θ = 41.15 θ = 31.57 θ = 21.50 θ = 12.36 θ = 3.32

1 1.03 1.46 2.07 2.94 4.82
2 0.00 0.30 0.92 1.79 3.67
3 0.00 0.00 0.24 1.11 2.99
4 0.00 0.00 0.00 2.98 14.26
5 0.00 0.00 0.00 0.00 3.28

Table 3: Duration t̄i

F = 0.10 F = 0.20 F = 0.40 F = 1.00 F = 3.00
Industry θ = 41.15 θ = 31.57 θ = 21.50 θ = 12.36 θ = 3.32

1 0.10 0.14 0.20 0.27 0.43
2 0.00 0.06 0.18 0.34 0.67
3 0.00 0.00 0.02 0.11 0.28
4 0.00 0.00 0.00 0.28 1.02
5 0.00 0.00 0.00 0.00 0.60

Table 4: Allocation of resources
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Appendix A

PROOF OF Lemma 1: Totally differentiating (2) yields

dqf

dq
=

p′

Γ′′ − p′
< 0,

d(qf + q)

dq
=

Γ′′

Γ′′ − p′
> 0.

�

PROOF OF Theorem 1:

1. We show that L(q)+cq
r+π(q)

has a unique minimum. Its derivative with respect to q is

(L′(q) + c)(r + π(q))− (L(q) + cq)π′(q)

(r + π(q))2
.

The derivative of the above numerator is

L′′(q)(r + π(q))− (L(q) + cq)π′′(q) > 0,

which means the numerator (L′(q) + c)(r + π(q)) − (L(q) + cq)π′(q) is strictly

increasing in q. Moreover, it is positive at q = p−1(0):

(L′(q) + c)(r + π(q))− (L(q) + cq)π′(q)|q=p−1(0)

= c(r + π(q)− π′(q)q) > 0.

Therefore, either (L′(q) + c)(r + π(q))− (L(q) + cq)π′(q) is always positive, or

it is first negative and then positive. The optimal qpub is 0 in the first case and

the solution to (L′(q) + c)(r + π(q))− (L(q) + cq)π′(q) = 0 in the second case.

In both cases, the optimal qpub is unique.

2. That qpub > 0 is equivalent to the condition that

(L′(q) + c)(r + π(q))− (L(q) + cq)π′(q)

(r + π(q))2
|q=0 < 0.
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The above condition simplifies to

(L′(0) + c)r − L(0)π′(0) < 0,

or

c < c̄, where c̄ ≡ π′(0)

r
L(0)− L′(0).

3. If qstat > 0, we show qpub > qstat. The first-order condition for qstat is c =

U ′(qstat) = −L′(qstat), which implies

(L′(qstat) + c)(r + π(qstat))− (L(qstat) + cqstat)π′(qstat) < 0.

Therefore, qpub > qstat.

�

PROOF OF Lemma 2: First, consider a relaxed problem where the government

minimizes the losses in (7) subject to (9).

min

∫ ∞
0

e−rt−Πt (L(qt) + cqt + π(qt)Mt) dt,

s.t. Mt ≥
∫ ∞
t

e−r(s−t)cqsds.

Since the above objective function is increasing in Mt, it is obvious that (9) binds in

the optimal solution.

Second, if Mt =
∫∞
t
e−r(s−t)cqsds for all t, then the incentive constraint (8) holds

as equality for all t and t̃. Therefore, the solution to the relaxed problem is indeed

incentive compatible. �

PROOF OF Lemma 3: If c ≥ c̄, then qt = 0,∀t ≥ 0 is optimal because it satisfies

the first-order condition in (12). To verify (12), note

−e−ΠtL′(qt) +

[∫ ∞
t

e−r(s−t)−ΠsL(qs)ds

]
π′(qt)

37



= −L′(0) +

[∫ ∞
t

e−r(s−t)L(0)ds

]
π′(0) = c̄ ≤ c.

If c < c̄, then consider a stationary plan where qt = q,∀t for some q ≥ 0. Then

the government’s cost function is

Lq =

∫ ∞
0

e−rt−ΠtL(qt)dt+ c

∫ ∞
0

e−rtqtdt =
L(q)

r + π(q)
+
c

r
q.

We have

dLq
dq
|q=0 =

c

r
+
L′(q)(r + π(q))− L(q)π′(q)

(r + π(q))2
|q=0

=
c

r
−
(
π′(0)

r2
L(0)− L′(0)

r

)
=
c− c̄
r

< 0.

Therefore Lq < L0 for small q > 0, implying that qt = 0, ∀t is suboptimal. �

PROOF OF Lemma 4: First, the HJB equation (15) is

rL(Π) = e−ΠL(q̂) + cq̂ + L′(Π)π(q̂), (27)

where q̂ is the optimal policy. Applying the Envelope theorem to (27), we have

rL′(Π) = −e−ΠL(q̂) + L′′(Π)π(q̂). (28)

Summing up (27) and (28), we have, for q̂ > 0,

L′(Π) + L′′(Π) =
r(L(Π) + L′(Π))− cq̂

π(q̂)
. (29)

Second, totally differentiating (16) with respect to Π and q̂ > 0 yields

dq̂

dΠ
= −−e

−ΠL′(q̂) + L′′(Π)π′(q̂)

e−ΠL′′(q̂) + L′(Π)π′′(q̂)
(30)

= −L
′(Π)π′(q̂) + c+ L′′(Π)π′(q̂)

e−ΠL′′(q̂) + L′(Π)π′′(q̂)

= −
(L(Π)+L′(Π))rπ′(q̂)+(π(q̂)−π′(q̂)q̂)c

π(q̂)

e−ΠL′′(q̂) + L′(Π)π′′(q̂)
< 0,
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where the second equality follows from (16), the third equality from (29), and the

last inequality follows from the assumption that q̂ > 0 and π(q̂) > π′(q̂)q̂. �

Lemma 5 −L(Π) ≤ L′(Π) < 0, where the equality holds if and only if qt = 0 for all

t ≥ 0.

PROOF: That −L(Π) ≤ L′(Π) holds because L′(Π) = −
∫∞

0
e−rte−ΠtL(qt)dt and

−L(Π) = −
∫ ∞

0

e−rt(e−ΠtL(qt) + cqt)dt ≤ −
∫ ∞

0

e−rte−ΠtL(qt)dt.

Clearly, the equality holds if and only if
∫∞

0
e−rtqtdt = 0, or qt = 0, ∀t ≥ 0. �

PROOF OF Theorem 2:

1. By contradiction, suppose q ≡ limt→∞ qt > 0 and π ≡ limt→∞ π(qt) > 0. Then
dΠt
dt

= π(qt) > π > 0 and limt→∞Πt =∞. Taking limit Π→∞ in (16) yields

0L′(q)− 0π′(q) = c,

which cannot hold as long as q > 0.

2. First, we show q0 > 0. Since qt = 0, ∀t ≥ 0 is suboptimal under the Bastable

condition, the optimal path satisfies qt∗ > 0 at least for some t∗. As part 1 shows,

because Πt is increasing over time and dq
dΠ
< 0 (Lemma 4), qt is decreasing over

time, which implies q0 ≥ qt∗ > 0.

Second, we show q0 > qstat. Because q0 > 0, the first-order condition (16) for q0

becomes −L′(q0)−L′(0)π′(q0) = c. It follows from L′(0) < 0 and the first-order

condition (3) for qstat that q0 > qstat.

Third, to show q0 < qpub, we first show

L′(0) > −cq
pub + L(qpub)

r + π(qpub)
. (31)
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By contradiction, suppose L′(0) ≤ − cqpub+L(qpub)
r+π(qpub)

. Then

rL(0) = min
q
L(q) + cq + L′(0)π(q)

≤ min
q
L(q) + cq − cqpub + L(qpub)

r + π(qpub)
π(q)

= L(qpub) + cqpub − cqpub + L(qpub)

r + π(qpub)
π(qpub) = r

cqpub + L(qpub)

r + π(qpub)
.

This contradicts the fact that private-information cost L(0) must be higher than

the public-information cost. It follow from q0 ∈ arg maxq L(q) + cq+L′(0)π(q),

qpub ∈ arg maxq L(q) + cq − cqpub+L(qpub)
r+π(qpub)

π(q), and (31) that q0 < qpub.

�

PROOF OF Theorem 3:

Define Π̄ ≡ log( c̄
c
). On [Π̄,∞), we can verify that L(Π) = e−ΠL(0)

r
and q(Π) =

0 = π(q(Π)) solve the HJB equation. So Πt cannot exceed Π̄, and therefore Π∞ ≡
limt→∞Πt ≤ Π̄. Since Theorem 2 shows limt→∞ qt = limt→∞ q(Πt) = 0, the mono-

tonicity of q(Πt) implies q(Π) = 0 for all Π ≥ Π∞, therefore, L(Π) = e−ΠL(0)
r

on

[Π∞,∞). Therefore, condition (16) at Π∞ implies

c ≥ −e−Π∞L′(0)− L′(Π∞)π′(0) = −e−Π∞L′(0) +
e−Π∞L(0)π′(0)

r

= e−Π∞ c̄ ≥ e−Π̄c̄ = c,

which implies Π∞ = Π̄. �

PROOF OF Theorem 4:

1. To show qt > 0,∀t, suppose by contradiction qt reaches 0 for the first time at

some t∗ > 0. It follows from (30) that

− dq
dΠ
|Π=Πt∗ = H ≡ −e

−Πt∗L′(0) + L′′(Πt∗)π
′(0)

e−Πt∗L′′(0) + L′(Πt∗)π′′(0)
,

where H is finite under the assumption of either L′′(0) > 0 or π′′(0) < 0. Pick

a small ε > 0, such that for all t ∈ (t∗− ε, t∗), qt is close to 0, Πt is close to Πt∗ ,
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and

π(qt) < 2π′(0)qt, − dq
dΠ
|Π=Πt < 2H.

Therefore, −dqt
dt

= −dqt
dΠ

dΠ
dt

= −dqt
dΠ
π(qt) < 4Hπ′(0)qt. It follows from Gronwall’s

inequality that qt∗ ≥ qt∗−εe
−4Hπ′(0)ε, which contradicts the assumption that

qt∗ = 0.

2. We show that qt reaches 0 in finite time and stays there afterward. Since

limt→∞ qt = 0, pick a t such that qt ≤ ε. First, we show L(Πt) = e−ΠtL(0)
r

. The

first-order condition for qt ≥ 0 is e−ΠtL′(qt) + c + L′(Πt)π
′(qt) ≥ 0 (becoming

an equality if qt > 0). Since L′(qt) = L′(0) and π′(qt) = π′(0), both 0 and qt are

optimal solutions. Therefore, the HJB equation (15) becomes

rL(Πt) = e−ΠtL(0) + c0 + L′(Πt)π(0) = e−ΠtL(0).

Second, we show L(Π) = e−ΠL(0)
r

for all Π ≥ Πt. On the one hand, L(Π) ≥
e−ΠL(0)

r
because −L(Π) ≤ L′(Π) in Lemma 5 implies that L(Π)eΠ is increasing

in Π. On the other hand, L(Π) ≤ e−ΠL(0)
r

because

rL(Π) = min
q
e−ΠL(q) + cq + L′(Π)π(q) ≤ e−ΠL(0).

Third, we show q(Π) = 0 for all Π > Πt. It follows from e−ΠL′(0) + c +

L′(Π)π′(0) > e−ΠtL′(0) + c+L′(Πt)π
′(0) ≥ 0 that 0 is the unique minimizer for

minq e
−ΠL(q) + cq + L′(Π)π(q). Hence, q(Π) = 0.

�

Lemma 6 If {qt}t≥0 is a production plan with qt ≤ q̄, ∀t ≥ 0, then

Y ≡
∫ ∞

0

e−rt−Πtqtdt ≤
q̄

r + π(q̄)
,

where Πt ≡
∫ t

0
π(qs)ds.
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PROOF: Define

Yt ≡
∫ ∞
t

e−r(s−t)−(Πs−Πt)qsds,

which satisfies the differential equation dYt
dt

= (r + π(qt))Yt − qt. We have

dYt
dt

= (r + π(qt))

(
Yt −

qt
r + π(qt)

)
≥ (r + π(qt))

(
Yt −

q̄

r + π(q̄)

)
,

where the inequality follows from the fact that q
r+π(q)

is increasing in q. Gron-

wall’s inequality then implies Yt − q̄
r+π(q̄)

≥
(
Y0 − q̄

r+π(q̄)

)
ert+Πt . If, by contradiction,

Y = Y0 >
q̄

r+π(q̄)
, then limt→∞ Yt − q̄

r+π(q̄)
≥ limt→∞

(
Y0 − q̄

r+π(q̄)

)
ert+Πt = ∞. This

contradicts the fact that Yt ≡
∫∞
t
e−r(s−t)−(Πs−Πt)qsds ≤

∫∞
t
e−r(s−t)q̄ds = q̄

r
. �

Lemma 7 In the direct mechanism, a domestic industry without a transition does not

have the incentive to report one.

PROOF: It follows from qt ≤ p−1(0) and Lemma 6 that∫ ∞
t

e−r(s−t)−(Πs−Πt)qsds ≤
p−1(0)

r + π(p−1(0))
. (32)

In the direct mechanism, suppose the domestic industry has no transition up to time

t. The continuation utilities for a truth teller and a liar (who reports a transition at

t) are, respectively,∫ ∞
t

e−r(s−t)(1− e−(Πs−Πt))cqsds =

∫ ∞
t

e−r(s−t)cqsds− c
∫ ∞
t

e−r(s−t)−(Πs−Πt)qsds,

Mt −
cp−1(0)

r + π(p−1(0))
=

∫ ∞
t

e−r(s−t)cqsds− c
p−1(0)

r + π(p−1(0))
.

The first utility is higher than the second because of (32). �

PROOF OF Theorem 5: We do not need to study the domestic industry’s strategy

after the transition, because any feasible strategy is optimal. Next, we will show q̃t =

qt before the transition is optimal. In our implementation, the domestic industry does

not receive any subsidy after time 0 and is fully responsible for its production cost.
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Therefore the industry’s objective is to minimize the present value of its production

cost before transition.

min
q̃t

∫ ∞
0

e−rt−Π̃t q̃tdt

s.t. q̃t ≥ qt, ∀t ≥ 0.

Let {q̂t}t≥0 denote the optimal solution in the above problem and define

Ŷt ≡
∫ ∞
t

e−r(s−t)−(Π̂s−Π̂t)q̂sds,

which is weakly below Yt since {q̂t}t≥0 is optimal. First, we show that Ŷt = Yt,∀t.
We have

dŶt
dt

= (r + π(q̂t))

(
Ŷt −

q̂t
r + π(q̂t)

)
≤ (r + π(q̂t))

(
Yt −

qt
r + π(qt)

)
≤ (r + π(qt))

(
Yt −

qt
r + π(qt)

)
=
dYt
dt
, (33)

where the first inequality follows from Ŷt ≤ Yt and q̂t
r+π(q̂t)

≥ qt
r+π(qt)

, and the second

inequality follows from Yt ≤ qt
r+π(qt)

, which follows from Lemma 6 and the fact that

qs ≤ qt, ∀s ≥ t in the direct mechanism. Since limt→∞ qt = 0 implies limt→∞ Yt = 0,

it follows from (33) that

0 ≤ lim
s→∞

Ŷs = lim
s→∞

(
Ŷs − Ys

)
≤ Ŷt − Yt, ∀t ≥ 0,

which, together with Ŷt ≤ Yt, imply Ŷt = Yt,∀t.
Second, we show q̂t = qt,∀t. Function (r + π(q))Yt − q is decreasing in q ≥ qt

because its derivative with respect to q is negative:

π′(q)Yt − 1 ≤ π′(q)
qt

r + π(qt)
− 1 ≤ π′(qt)

qt
r + π(qt)

− 1 < 0.

It follows from the monotonicity of (r+π(q))Yt− q in q and (r+π(q̂t))Yt− q̂t = dŶt
dt

=
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dYt
dt

= (r + π(qt))Yt − qt that q̂t = qt. �

PROOF OF Theorem 6: First, the objective function L∗(q) ≡ L(q)
r+π(q)

+ c
r
q is convex

in q because its derivative

(L∗)′(q) =
L′(q)

r + π(q)
− L(q)

(r + π(q))2
π′(q) +

c

r

is monotonically increasing in q. Therefore, the first-order condition (L∗)′(q∗) = 0 is

necessary and sufficient for finding q∗.

Second, by contradiction, suppose q∗ ≥ q0. It follows from the monotonicity of qt

that q∗ > qt for all t > 0. We have

−L′(q∗) +
L(q∗)

r + π(q∗)
π′(q∗) =

r + π(q∗)

r
c

≥ c

= −L′(q0) +

[∫ ∞
0

e−rs−ΠsL(qs)ds

]
π′(q0)

> −L′(q0) +

[∫ ∞
0

e−rs−π(q∗)sL(q∗)ds

]
π′(q0)

= −L′(q0) +
L(q∗)

r + π(q∗)
π′(q0),

where the first equality follows from (L∗)′(q∗) = 0, the second equality follows from

the first-order condition for q0, and the second inequality follows from q∗ > qt,∀t > 0.

Since −L′(q) + L(q∗)
r+π(q∗)

π′(q) is decreasing in q, the above inequality implies q∗ < q0,

contradicting the assumption of q∗ ≥ q0. �

PROOF OF Theorem 7: In this proof, we first solve the HJB equation (15) for

the linear example by “guess and verify.” Conjecture the value function as

L(Π) =

 c
r

(
1− π

r+π
e
r
π

(Π−Π̄)
)
, if Π < Π̄;

γ
r
e−Π, if Π ≥ Π̄,

where Π̄ = πt̄. First, we verify (15) for Π ≥ Π̄. Since L′(Π) = −γ
r
e−Π, we have

min
q
e−Πγ(1− q) + cq + L′(Π)πq = min

q
e−Πγ(1− q) + cq − γ

r
e−Ππq
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= min
q
e−Π

(
γ − γq − γ

r
πq
)

+ rcq

= e−Πγ = rL(Π).

Second, we verify (15) for Π < Π̄. Since L′(Π) = − c
r+π

e
r
π

(Π−Π̄), we have

min
q
e−Πγ(1− q) + cq + L′(Π)πq = min

q
e−Πγ(1− q) + cq − c

r + π
e
r
π

(Π−Π̄)πq.

The derivative of the above with respect to q is f(Π) ≡ c− e−Πγ − cπ
r+π

e
r
π

(Π−Π̄). We

show that f(Π) < 0 for all Π < Π̄. We have

f(Π̄) = 0,

f ′(Π̄) =

(
e−Πγ − cr

r + π
e
r
π

(Π−Π̄)

)
|Π=Π̄ = 0.

So it follows from the concavity of f that f(Π) < 0 for all Π < Π̄. Hence the optimal

q = 1 and

min
q
e−Πγ(1− q) + cq − c

r + π
e
r
π

(Π−Π̄)πq = c− cπ

r + π
e
r
π

(Π−Π̄) = rL(Π).

In the above verification of the HJB equation, the optimal policy function is shown

to be

q(Π) =

{
1, if Π < Π̄;

0, if Π ≥ Π̄,

which implies (24). Plugging (24) into Mt =
∫∞
t
e−r(s−t)cqsds yields (26). �

Appendix B

Suppose the government cares about both the consumers and the domestic in-

dustry, and puts a weight δ < 1 on the latter. The optimal policy under public

information (qt = qpub,∀t ≥ 0 in Theorem 1) remains unchanged: The optimal payoff

of the domestic industry is still zero because the government puts a higher weight on

the consumers.
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Under private information, the government’s objective function changes to

−
∫ ∞

0

e−rt−Πt (L(qt) + cqt + π(qt)(1− δ)Mt) dt

= −
∫ ∞

0

e−rt−Πt(L(qt) + cqt)dt−
∫ ∞

0

(1− e−Πt)(1− δ)e−rtcqtdt

= −
∫ ∞

0

e−rt(e−Πt(L(qt) + δcqt) + (1− δ)cqt)dt

= −(1− δ)
∫ ∞

0

e−rt(e−ΠtL̃(qt) + cqt),

where L̃(q) ≡ L(q)+δcq
1−δ . In other words, the government’s problem with a positive

weight on the domestic industry is equivalent to another problem in which the weight

is zero but the social loss function increases from L(q) to L̃(q). Intuitively, the

government provides more protection either with a positive weight on the domestic

industry or with a higher social loss function. Our Theorems 2, 3, and 4 continue to

hold.14

14Note that the parameter value of c̄ in Theorems 3 and 4 has been changed by the new social
loss function L̃.
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